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Abstract Recently, a-L-arabinofuranosidases (EC3.2.1.55)
have received increased attention primarily due to their
role in the degradation of lignocelluloses as well as their
positive effect on the activity of other enzymes acting on
lignocelluloses. As a result, these enzymes are used in
many biotechnological applications including wine
industry, clarification of fruit juices, digestion enhance-
ment of animal feedstuffs and as a natural improver for
bread. Moreover, these enzymes could be used to im-
prove existing technologies and to develop new tech-
nologies. The production, mechanisms of action,
classification, synergistic role, biochemical properties,
substrate specificities, molecular biology and biotech-
nological applications of these enzymes have been re-
viewed in this article.
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Introduction

Lignocelluloses of plant cell walls are composed of cel-
lulose, hemicellulose, pectin and lignin. Hemicelluloses
are one of the most abundant renewable polymers on the
earth. Moreover, cellulose, hemicelluloses, lignin and
pectins are the key components in the degradation of
lignocelluloses. Many enzymes are involved in the deg-
radation of these polymeric substrates [129]. L-arabino-
syl residues are widely distributed in these polymers as
side chains. The presence of these side chains restricts
the enzymatic hydrolysis of hemicelluloses and pectins
[93, 99, 101]. Further, it also represents a formidable
technological barrier that retards the development of
various industrial processes [99]. The use of a single

accessory enzyme for partial or specific modification of
lignocelluloses might offer new interesting options for
the utilization of these low-cost raw materials [72, 110].

The a-L-arabinofuranosidases (a-L-AFases) are
accessory enzymes that cleave a-L-arabinofuranosidic
linkages and act synergistically with other hemicellulases
and pectic enzymes for the complete hydrolysis of he-
micelluloses and pectins [77, 113]. These enzymes war-
rant substantial research efforts because they represent
potential rate-limiting enzymes in the degradation of
lignocelluloses from agricultural residues [99]. The ac-
tion of a-L-AFase alone or in combination with other
lignocellulose-degrading enzymes represents a promising
biotechnological tool as alternatives to some of the
existing chemical technologies such as chlorination in
pulp and paper industry [44, 46, 74], synthesis of oligo-
saccharides [94, 95] and pretreatment of lignocelluloses
for bioethanol production [100, 101]. Considering the
potential and future prospects of a-L-AFases, this paper
reviews the various aspects of these enzymes with
emphasis on their potential for biotechnology.

Hemicelluloses and pectins

Hemicelluloses andpectins are thematrix polysaccharides
of the plant cell wall. They account for 25–35% of ligno-
cellulose biomass [99]. The hemicellulose xylans contain a
b-1,4-linked D-xylose backbone [30]. In many plants,
xylan backbone is substituted by different side chains with
L-arabinose, D-galactose, acetyl, feruloyl, p-coumaroyl
and glucuronic residues [1, 30]. Xylans from grasses,
cereals, softwood and hardwood differ in their composi-
tion. This is due to the differences in the frequency and
composition of the side chain substituents of xylans [30,
99, 100]. Similarly, arabinoxylans are found in the cell
walls of the cereal plants and grasses belonging to the
family Gramineae [1, 70]. They contain xylan backbone
that is partially substituted at intervals with a-L-arabin-
ofuranose residues [1]. Moreover, wheat arabinoxylan
also contains other substituents as shown in Fig. 1 [1, 30].
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Pectins are a family of complex heteropolysaccha-
rides that contain two well-defined regions called as
smooth and hairy (Fig. 2) [17, 30]. The three pectic
polysaccharides homogalacturonan, rhamnogalacturo-
nan-I and substituted galacturonan have been isolated
from plant cell walls [28, 30]. The dominant feature of
the pectins is the presence of a linear backbone of
galacturonic acid containing varying proportion of me-
thyl ester groups. Pectin polymer backbone is inter-
spersed at intervals with rhamnose residues carrying the
neutral sugars side chains containing arabinose and
galactose that form arabinans, arabinogalactans or ga-
lactans (Fig. 2) [17, 49]. Pectins are abundant in the soft
tissues of citrus fruits [49, 131], sugar beet pulp and
apple [20, 28].

The a-L-AFases

The a-L-AFases (a-L-arabinofuranoside arabinofurano-
hydrolases, EC 3.2.1.55) are the enzymes involved in the
hydrolysis of L-arabinose linkages. These enzymes have
been purified from several bacteria, fungi and plants [51,
73, 93]. They form a part of the array of glycoside hy-
drolases required for the complete degradation of arab-
inose-containing polysaccharides [99, 115]. The action of
these enzymes accelerates the hydrolysis of the glycosidic
bonds by more than 1017 fold, making them one of the
most efficient catalysts known [98, 107]. Such enzymatic
hydrolysis releases soluble substrates, which are utilized
by both prokaryotic and eukaryotic microorganisms [77].
The a-L-AFases specifically catalyze the hydrolysis of
terminal nonreducing-a-L-1,2-, a-L-1,3- and a-L-1,5-ara-
binofuranosyl residues from different oligosaccharides
and polysaccharides [99, 101, 112]. Whereas the nature of
a glycone sugar can influence the catalytic activity
of other arabinose-releasing enzymes, the a-L-AFases
do not distinguish between the saccharide link to the

arabinofuranosyl moiety and thus exhibit wide substrate
specificity [93, 97]. Effective hydrolysis of a-L-arabino-
furanosyl residues from various pectic, homo-hemicell-
ulosic polysaccharides (branched arabinans, debranched
arabinans), heteropolysaccharides (arabinogalactans,
arabinoxylans, arabinoxyloglucans, glucuronoarabin-
oxylans, etc.) and different glycoconjugates is carried out
by the a-L-AFases [8, 112]. Moreover, most microbial a-
L-AFases are secreted into the culture media; thus, they
are likely to attack polysaccharides [84].

The synergistic role of a-L-AFases

The importance of a-L-AFases has come from the fact
that arabinose side chains on hemicelluloses and pec-
tins participate in cross-linking within the plant cell
wall structure. The presence of these side chains also
affects the form and functional properties of hemicel-
luloses and pectins [29]. They reduce the interaction
between polymers chains due to their inherently more
flexible water-hungry furanose conformations. More-
over, the L-arabinofuranoside substitutions on xylan
strongly inhibit the action of xylan-degrading enzymes
(Fig. 1), thus preventing the complete degradation of
the polymer to its basic xylose units [99, 107]. Simi-
larly, L-arabinofuranoside substitutions in pectin
(Fig. 2) prevent the complete degradation of this
polymer to its basic units. The a-L-AFases act syner-
gistically with other hemicellulases and pectinases for
the complete degradation of hemicelluloses and pec-
tins, respectively [4, 29, 67, 102]. Moreover, in some
cases, a-L-AFases possessing b-xylosidase activity or
xylanases with a-L-arabinofuranosidase activity also
have been described [73, 74, 83, 121]. Furthermore,
some a-L-AFases with both exo- and endo-activity on
arabinan, one of the major constituents of pectins, has
been reported [11, 87].

Fig. 1 The main structural
features considered present
within water-soluble wheat
arabinoxylans. The diagram
also indicates the variety of
enzymes that are active against
arabinoxylans. Modified from
Ref. [1]
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The role of a-L-AFases in the degradation of arabi-
nose-containing polymers is well known. They have a
cooperative role facilitating the action of other ligno-
cellulose-degrading enzymes [118, 120]. This has been
confirmed for a-L-AFase from Thermomonospora fusca
that worked in truly synergistic relationship with en-
doxylanase from the same bacterium releasing 0.6 and
0.3 mg of reducing sugars from oat spelt xylan and ball-
milled wheat straw, respectively [4]. a-L-AFase played an
important role to increase the release of reducing sugars
from these lignocelluloses. However, other authors re-
port the synergistic action of these enzymes with other
pectinases and hemicellulases on lignocelluloses. For
instance, the two enzymes a-L-AFases (kabfA and ka-
bjB) from Aspergillus kawachii acted synergistically with
xylanase in the degradation of arabinoxylan, releasing
higher amounts of ferulic acid in the presence of feruloyl
esterase [68]. Furthermore, Hashimoto and Nakata [51]
showed that hemicellulose from soy sauce materials was
decomposed synergistically by xylanase, b-xylosidase
and a-L-AFase produced by Aspergillus oryzae HL15
during moromi1 fermentation. They also suggested that
a-L-AFase of A. oryzae HL15 was very closely involved
in releasing not only arabinose but also xylose into
moromi mash. The same effect has been shown when
these enzymes act synergistically on arabinoxylan.
Moreover, an exo-arabinanase, Abnx from Penicillium
chrysogenum, released very little arabinobiose from
arabinan, as the action of Abnx was inhibited by the
arabinofuranose unit linked as a side chain [102]. When
Abnx acted in combination with either a-L-AFases
(AFQ1 or AFS1), from the same fungus, the arabinose
contents in the reaction mixtures were higher than the
sum of those by the two enzymes acting separately [102].

Furthermore, Morales et al. [88] reported that the two a-
L-Afases, i.e., AF64 and AF53 from Bacillus polymyxa,
facilitate the action of the endoxylanase on oat spelt
xylan and wheat bran arabinoxylan. An increase in the
production of smaller xylooligosaccharides has occurred
because of the cooperative action of a-L-AFases used in
these experiments. a-L-AFases also act synergistically
with endo-arabinanase and cinnamoyl esterase (Cin-
nAE) from Aspergillus niger. When sugar-beet pulp
(SBP) was incubated with the mixture of the former
enzymes, the esterase was able to release 14 times more
of the alkali-extractable ferulic acid present in the whole
pulp as free acid than CinnAE alone [70].

Classification of arabinose-releasing enzymes

Kaji [60] classified a-L-AFases based on their sources and
substrate specificity. Beldman et al. [8] classified arabi-
nose-releasing enzymes depending on the mode of action
and their substrate specificity. However, both classifica-
tions were not effective as they were too broad to define
the substrate specificities of these enzymes. Moreover,
newly isolated enzymes have shown different modes of
action than those enzymes classified before. Because of
this, further subclasses and a new class need to be added
to the existing system of classification proposed by
Beldman et al. [8]. In view of this, three subclasses of the
existing arabinoxylan-a-L-arabinofuranohydrolases class
could be introduced [38, 122, 123] and designated Sub-
class (1) AXHB-md 2, 3, Subclass (2) AXHB-m 2,3 and
Subclass (3) AXHd3.

Subclass (1) AXHB-md 2,3 includes enzymes that
release arabinose from both singly and doubly substi-
tuted xylose, and able to hydrolyze p-nitrophenyl a-L-
arabinofuranoside at a rate similar to that for oligo-
saccharide substrates. This subclass was exemplified by
the enzyme arabinoxylan arabinofuranohydrolase iso-
lated from germinated barley [38].

Fig. 2 Schematic drawing of
pectin (rhamnogalcturonan I)
showing the smooth and
hairy regions. Modified from
Ref. [30]

1Moromi is a fermenting mixture or mash of rice, water, koji
(malted soybeans) and A. oryzae, which is produced during the
traditional fermentation of soy sauce and in the production of sake,
the traditional alcoholic beverage in Japan.
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Subclass (2) AXHB-m 2,3 includes enzymes that
hydrolyze arabinose residues from C2 or C3 linked to a
single-substituted xylose residue and do not hydrolyze p-
nitrophenyl a-L-arabinofuranoside. The enzyme isolated
from Bifidobacterium adolescentis [122] represents this
subclass.

Subclass (3) AXHd3 includes enzymes that are able
to release only C3-linked arabinose residues from dou-
ble-substituted xylose residues but do not hydrolyze p-
nitrophenyl a-L-arabinofuranoside. This subclass was
represented by the enzyme isolated from B. adolescentis
[123].

Recently, new types of a-L-AFases have been isolated
with properties that have not been reported earlier. Such
enzymes could not be assigned to any of the arabinose-
releasing enzyme classes. These enzymes have the ability
to act on both interior a-1,5 backbone and a-1,3–side
chains of arabinan and debranched arabinans; in addi-
tion, they are able to act on p-nitrophenyl a-L-arabino-
furanoside. In view of this, these enzymes should be
assigned into a new class represented by a-L-AFase iso-
lated from the thermophilic bacterium PRI-1686 [11]
and Tm-AFase from the hyperthermophilic bacterium
Thermotoga maritima MSB8 [87].

The most recent classification scheme based on amino
acid sequences, primary structure similarities and
hydrophobic cluster analysis has classified a-L-AFases
into five glycosyl hydrolases families (GHs), i.e., GH3,
GH43, GH51, GH54, and GH62 [23, 52]. This classifi-
cation is useful to study evolutionary relationship,
mechanistic information and structural features of these
enzymes [25].

Mechanisms of action of a-L-AFases

Like other glycoside hydrolases, a-L-AFases mediate
glycosidic bond cleavage via acid/base-assisted catalysis
employing two major mechanisms, giving rise to either
an overall retention or an inversion of the anomeric
configuration [26, 136]. In both mechanisms, as shown in
Fig. 3, the hydrolysis usually requires two carboxylic
acids, which are conserved within each glycoside
hydrolases family [98] and proceed through an exocar-
bonium ion-like transition state [92, 98, 107].

Retaining a-L-AFases are members of GH3, GH51
and GH54 families that cleave the glycosidic bond using
a two-step double-displacement mechanism, as shown in
Fig. 3a. This was also confirmed by the crystal structure
studies and snapshots along the reaction pathway of
GH51 described by Hövel et al. [56]. In the first step of
the reaction (glycosylation), the acid–base residue acts as
a general acid, protonating the glycosidic oxygen and
stabilizing the leaving group. The nucleophilic residue
attacks the anomeric carbon of the scissile bond, form-
ing a covalent glycosyl-enzyme intermediate with the
opposite anomeric configuration of the substrate. In the
second step (deglycosylation), the acid–base residue,

acting this time as a general base, activates a water
molecule that attacks the anomeric center of the glyco-
syl-enzyme intermediate from the same direction of the
original bond, liberating the free sugar with an overall
retention of the anomeric configuration [36, 56].

Inverting a-L-AFases that represent GH43 family
use a single displacement mechanism, in which one
carboxylate acts as a general base catalyst, deproto-
nating the nucleophilic water molecule that attacks the
bond, while the other carboxylic acid acts as a general
acid catalyst by protonating the leaving aglycone
(Fig. 3b) [107, 136].

Production of a-L-AFases

The a-L-AFases production is influenced by the carbon
source and composition of the growth medium. Various
carbon sources including monomeric sugars and com-
plex polysaccharides have been used to assess their effect
on the production, induction and substrate specificity of
a-L-AFases (Table 1). For example, pentoses D-arabi-
nose, L-arabinose, D-xylose and hexoses D-galactose, D-
glucose, D-mannose, L-sorbose have been commonly
used. Other sugars cellobiose, lactose, lactulose, maltose,
mellibose, sucrose, trisaccharide, raffinose, D-arabitol, L-
arabitol, D-mannitol, D-sorbitol and xylitol also have
been used. Sugar beet pulp (starch-free), wheat bran
(starch-free), wheat straw, oatmeal, rice straw and corn
cob are some of the lignocelluloses that have been used
for the production of a-L-AFases. Polysaccharides such
as oat spelt xylan, birchwood xylan, beechwood xylan,
wheat arabinoxylan, arabinogalactan, larch wood
arabinogalactan, sugar beet arabinan, galactan CMC,
guar gum, gum Arabic and locust bean gum have also
been used. Pectins, schizophyllan, starch, xanthan,
carboxymethyl cellulose, potato b-1,4-galactan, carob
galactomannan, Me-b-xyloside and lactobionic acid
are some other carbon sources utilized for a-L-AFases
production.

Generally, arabinose-containing substrates are
essential for the efficient production of a-L-AFases [9,
68]. Monomeric compounds L-arabitol and L-arabinose
induce the genes involved in the production of these
enzymes in some microorganisms [27]. Conversely, other
monosaccharides such as glucose and galactose may
inhibit the production of a-L-AFases [9, 68]. Arabino-
galactans and oatmeal were found to be the best
inducers for a-L-AFase isolated from Bacillus pumilus
PS213 [32]. a-L-AFase was produced by Rhodothermus
marinus when the culture was grown on birchwood
xylan [46]. L-Arabitol was the inducer for the production
of a-L-AFases enzymes araA and araB by the A. niger
mutants [26]; ABF1 by the Penicillium purpuroge-
num [15, 27] and kabfA and kabjB by the A. kawachii
[68]. a-L-AFase production by Pseudomona cellulosa was
repressed when glucose was used in the production
medium [9].
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The experiments carried out by Gomes et al. [46]
indicated that carbon and nitrogen sources influence the
production of a-L-AFase by R. marinus. In these experi-
ments, different concentrations of xylan (2–6 g/l) and
yeast extract (4–12 g/l) were used to increase the enzyme
production. The highest enzyme activity (108 nkat/ml)
was obtained with medium containing 3 and 9 g/l of
Birchwood xylan and yeast extracts, respectively. The
lowest enzyme activity (86 nkat/ml) was obtained with
medium containing 5 and 7 g/l of Birchwood xylan and
yeast extracts, respectively [46].A. niger showed highest a-
L-AFase activity (243 U/ml) when grown on a solid-state
medium with C: N ratio of 15:9. The carbon and nitrogen
sources used were dried skins of grape pomace and casein
peptone, respectively [57]. T. fusca BD25 showed highest
a-L-AFase activity (0.136 U/mg protein) when grown in a
medium containing 0.6% (w/v) oat spelt xylan and 0.6%

(w/v) yeast extract corresponding to C:N ratio of 4:1
[117–119].

Production of a-L-AFase by Aspergillus nidulans was
high when ammonium sulfate or ammonium chloride
was used as nitrogen source [37]. A. kuwachii IF04308
produced highest amounts of a-L-AFase when grown on
a medium supplemented with a mixture of bactotryp-
tone, yeast extract and NaNO3 as a nitrogen source [68].
Similarly, when a mixture of urea, ammonium sulfate
and neopeptone was used as a source of nitrogen, the
production of a-L-AFase by P. purpurogenum was en-
hanced [27].

Both temperature and pH of the growth medium are
known to influence growth and enzyme production by
microorganisms. The thermophilic bacterium R. marinus
produced 5.32 U/mg of a-L-AFase when grown in a
shake flask for 96 h at 61�C and pH 8. Similarly, the

O
O

O

OO

H d+

d-

d-

d-

+
+

H

OO
-

O
H

H

O

OO

d -

d-

d-d+

+
+

O
OH

OO

H

O
O

-

O
O

O

OO

H

O O
-

O
H

H

d-

d+

d-

d - +
+

OO

O

OH

O

OH

OO

H

-

(a)

(b)

O
O

-

H

OO

O O

O
O

O

O OH

OO

O O

H

OO

O

O
O

O

H

H

H
O O

O

OHGlycosylation

Deglycosylation

Fig. 3 General mechanisms for
a retaining and b inverting
glycosidases. Adapted from
Ref. [98]

251



fungus P. chrysogenum 31B produced higher amounts of
two a-L-AFases when grown under static conditions for
12 days at pH 5.0 and 30�C [102, 103].

Batch cultivation system in shake flasks has been
used for a-L-AFases production by bacteria [32, 46] and
fungi [51, 68, 102]. Yields of a-L-AFase were relatively
better (88.7 nkat/mg protein) when R. marinus was
grown in shake flasks as compared to that obtained
when grown in a bioreactor (54.5 nkat/mg protein)
[46]. Solid-state fermentation (SSF) has been used
successfully for a-L-AFases production from different
fungi [40, 96, 57]. SSF system resembles the natural
habitat of microbes and, therefore, may prove efficient
in producing certain enzymes and metabolites. How-
ever, not much is known about a-L-AFases production
by bacteria using SSF.

Biochemical properties of a-L-AFases

The available information on the biochemical proper-
ties of a-L-AFases is mostly derived from the studies
carried out on the enzymes isolated from bacteria,
fungi and plants. Microbial a-L-AFases vary in their

molecular masses, which can be as high as 495 kDa for
a-L-AFase from Streptomyces purpurascens IFO 3389
[66] (Table 1).

The effect of temperature and pH on the a-L-AFase
depends on the source from which the enzyme is isolated
(Table 1). The highest temperature stability has been
obtained for a-L-AFase from T. maritima MSB8. This
cloned enzyme has an optimal temperature of 90�C at
pH 7. Moreover, at this temperature (90�C) and pH (7),
the enzyme was stable for 24 h. It also retains 50% of its
activity at 100�C over a period of 20 min [87]. The other
example is a-L-AFase from R. marinus, which is stable at
85�C for 8.3 h in a pH range of 5.0–9.0 [46, 76].

The activities of a-L-AFases are affected by metal
ions, ionic and nonionic detergents, and chelating and
reducing agents depending on the enzyme and concen-
tration of the agent used [54, 76]. For instance, the
activities of a-L-AFase (abfB) from Bifidobacterium
longum B667 [76] and a-L-AFase (AbfD3) from Ther-
mobacillus xylanilyticus D3 were not affected by EDTA,
DTT, but were affected by Cu2+ ions [31, 76]. Metal
ions such as Ag+, Hg2+, Zn2+, Cd+2, Co+2 and Ni had
an inhibitory effect on some of these enzymes [76, 102,
116].

Table 1 Properties of some microbial a-L-arabinofuranosidases

Microorganism Enzyme Molecular
mass
(kDa)

Optimum
pH

Optimum
temperature
(�C)

Polymers
attacked

GHs
family

References

A. oryzae HL15 Afase 60a 5.5 60 AX, AG, OSX – [51]
110b

A. oryzae abfA 228 5 50 – 51 [82]
A. Kawachii AkAbfA 80 4 55 AX 51 [68]

AkAbfB 62
Fusarium oxysporum
f. sp. dianthi (Fod)

abfB – 4.0 50 OSX – [18]

P. purpurogenum ABF1 49.6 5 50 AX, BX, OSX, IAG,
WS, WB

54 [15, 27]
58

P. chrysogenum AFQ1 79 4 50 BA, DA, AX, SAG,
A2, A3

51 [102]
AFS1 52 3.3–5.0 50

Rhizomucor pusillus HHT1 AFase – – – BA, A2, A3, A4, A5 – [93]
B. pumilus PS213 AF 22056c 7 55 OSX, AG 51 [32]
B. breve K-110 AFase 60 – – Ginsenoside Rb2 and Rc 51 [108]
Clostridium cellulovorans rArfA 138 6 40–50 BA, AX 51 [69]
Bifidobacrerium longum B667 abfB 61c260b 6.0 45 BA, AX, A2, A3, A4, A5 51 [76]
P. cellulosa abf51A 57 5.5 <55 WA, BA, A2, A3, A4, A5 51 [9]

abf62A – – – WA, A2, A3, A4, A5 62
S. chartreusis GS901 AFase I 80 5.5 55 BA, AX, AG, A2, A3 51 [84]

AFaseP 37 7 50 BA, AX, AG, A2 43
Streptomyces thermaviolaces
OPC-520

STX-IV 37 5 60 AX, OSX 62 [116]

Thermoanaerobactere
ethanolicus JW200

xarB 85 – 65 – 3 [74]

Thermobacillus xylaniliticus D3 AbfD3 56.071 6.2 75 WA, IX, OSX 51 [31]
T. fusca ~92 9 65 – – [118, 119]
Bacterium PRI-1686 AraF 350 6 70 BA, DA, OSX 51 [11]
T. maritima MSB8 AFase 332 7 90 BA, DA 51 [87]

aMolecular mass determined by SDS-PAGE gel
bMolecular mass determined by gel filtration
cMolecular mass determined by mass spectrometry
OSX oat spelt xylan, AG arabinogalactan, BA arabinan, BiWX birchwoodxylan, BeWX beechwood xylan, WA wheat arabinoxylan, BX
sugar beet pulp xylan, WBX wheat bran, IX larch xylan, SAG soybean arabinogalactans, IAG larchwood arabinogalactan, WS wheat
straw, WB wheat bran, DA Debranched arabinans, A2 arabinobiose, A3 arabinotriose, A4 arabinotetraose, A5 arabinopentaose
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Molecular biology of a-L-AFases

Some a-L-AFases have been studied up to molecular
level. The genes coding for these enzymes have been
identified, cloned and expressed in different bacterial
and fungal systems. In addition, the protein products of
these genes have been sequenced and the evolutionary
relationship among some of the sequenced proteins has
been reported using the phylogenetic tree analysis [32].
For example, some of the cloned genes, i.e., STX-IV
from Streptomyces thermoviolaceus OPC-520 chromo-
some [116], AkabfA and AkabfB from A. kawachii and
AwabfA and AwabfB from Aspergillus awamori [68],
xarB from the thermophilic anaerobe Thermoanaerob-
acter ethanolicus JW200 [74], a-L-AFase gene from B.
longum B667 [76], Bifidobacterium breve K-110 [108] and
from the Clostridium cellulovorans genomic library [69]
have been characterized. Similarly, genes such as
Abf51A from the genomic library of Psuedomonas cel-
lulosa [9], abf1 from P. purpurogenum [15], abfA from T.
maritima TM0281 [87] and abfB from Fusarium oxy-
sporum f. sp. dianthi (Fod) [18] also have been well
characterized.

Amino acid sequencing as well as crystal structure
studies indicate the presence of substrate-binding do-
main (SBD) in some of the reported enzymes. The SBD
may take part in the efficiency of the enzyme function
[71]. However, the possible role of a-L-AFases in the
release of arabinofuranosyl residues is not yet clear [65].
Some a-L-AFases with SBD have been reported, i.e., a-L-
AFases from Pseudomonas fluorescens and Streptomyces
lividans have a cellulose-binding domain (CBD) [63] and
a xylan-binding domain (XBD) [125], respectively. Other
a-L-AFases such as those produced by Streptomyces
chartreusisGS901 possess additional functional domains
at both the N-terminal and the C-terminal regions.
However, these domains did not show any similarities to
the known SBD observed in many other types of gly-
canases. It might represent a novel kind of SBD [84]. A.
kawachii IFO4308 a-L-AFase (AkAbfB) was found to
have an arabinose-binding domain (ABD) that showed a
number of distinct characteristics that are different from
those of carbohydrate-binding module (CBM) [86]. Re-
cently, Bolam et al. [13] showed that the X4 modules
from a Cellvibrio japonicus a-L-AFase (Abf62A) binds to
polysaccharides. This protein comprises a new family of
CBMs, designated as Abf62A-CBM35. There are more
than 13 a-L-AFases that have been grouped in family 42
of CBM [23].

So far, only three a-L-AFases have been studied for
their three-dimensional structure. There appears con-
siderable diversity in the three-dimensional structure
of these enzymes. These enzymes are a-L-AFase B (Ak-
abfB) (EC 3.2.1.55) from A. kawachii IFO 4308 located
within GH 54 family [86], a-L-AFase (AbfA) (EC
3.2.1.55) from Geobacillus stearothermophillus T-6 lo-
cated within GH 51 family [56, 107] and the bifunctional
xylanase D/ a-L-arabinofuranosidase (XynD)/(Xyn43A)

(EC 3.2.1.8 and EC 3.2.1.55, respectively), of Paeniba-
cillus polymyxa located within GH 43 family [56].

Biotechnological applications of a-L-AFases

The importance of lignocellulose-degrading enzymes is
well defined because of their role in many industrial and
biotechnological processes. This resulted in re-estab-
lishment of a new era for the efficient utilization of the
cheap agricultural waste materials. a-L-AFases, with
their synergistic action with other lignocellulose-
degrading enzymes, are the promising tools in various
agro-industrial processes [3, 99]. These include produc-
tion of important medicinal compounds, improvement
of the wine flavors, bread quality, pulp treatment, juice
clarification, quality of animal feedstock, production of
bioethanol and the synthesis of oligosaccharides.

Production of arabinose as antiglycemic agent

Recently, there is a growing interest for L-arabinose as a
possible food additive because of its sweet taste, and its
low uptake due to its poor absorption by the human
body [84]. Moreover, it has been proved that L-arabi-
nose selectively inhibits intestinal sucrase in a competi-
tive manner and thus reduces the glycemic response after
sucrose ingestion in animals [106]. Studies carried out on
mice suggest that L-arabinose dose-dependently sup-
pressed the increase of blood glucose level after the
ingestion of sucrose [108]. Furthermore, L-arabinose
delays and reduces the digestion, absorption and the net
energy derived from sucrose when both are ingested
simultaneously. Based on these findings, L-arabinose can
be used as a physiologically functional sugar that
inhibits sucrose digestion. In this way, L-arabinose is
useful in preventing postprandial hyperglycemia in dia-
betic patients [1042]. Therefore, effective L-arabinose
production is a vital perquisite for its use in this respect
as well as for its importance in food industry. To achieve
this goal, it is necessary to use arabinose-releasing en-
zymes a-L-AFases, and defined polysaccharides and ol-
igosaccharides from different agricultural raw materials
[84, 93, 115].

Production of antimetastatic and anticarcinogenic
compounds

Ginsenosides Rb2 and Rc are the main components of
ginseng (the root of Panax ginseng C.A. Meyer, Arali-
aceae). These roots are frequently used as a traditional
medicine in China, Korea, Japan and other Asian
countries. Ginsenosides Rb2 and Rc are L-arabinofur-
anoside- and L-arabinopyranoside-bound glycosides,

2as cited by [108].
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respectively, in ginsenoside Rd [108]. These ginsenosides
are transformed to compound K, via ginsenoside Rd, by
intestinal bacteria in human intestine by the action of a-
L-AFase [7] (Fig. 4). The pharmacological actions of
these ginsenosides have been explained based on the
biotransformation of ginsenosides by glycosidases of
human intestinal bacteria [2, 6, 7, 50, 128]. The latter
bacteria utilize a-L-AFase to transform the proto-
panaxadiol ginsenosides to compound K that exhibits
antimetastatic and/or anticarcinogenic effects. More-
over, compound K can be produced effectively by dif-
ferent arabinosidases including a-L-AFases and a-L-
arabinopyranosidase [61].

a-L-AFases and wine industry

One of the most important characteristics of wine
quality is its aromatic fragrance. It is now well estab-
lished that certain monoterpenes contribute significantly
to the flavor of wine [80]. Terpenols are strongly aro-
matic molecules that represent an important part of
aromas [42]. They are not volatile and are directly
accessible to the olfactory mucosa [12, 127, 132]. A
major portion of these monoterpenols in grapes musts,
wines, other alcoholic beverages (brandy, bitters, etc.)
and fruit juices (apple, apricot, peach, papaya, passion
fruit etc.) [12, 105] are linked to disaccharide moieties, in
which the major terminal non-reducing sugar is a-L-
arabinofuranose which can be released by the action of
a-L-AFases [12]. It is now clear that the glycosidically
bound volatiles can be released by sequential enzymatic
hydrolysis in two stages. In the first step, and depending
on the precursor, the glycosidic linkage is cleaved by a-L-

AFases, followed by the action of the other glycosidase,
which then liberates the monoterpenols (Fig. 5) [42, 43,
78, 113, 114, 133]. Thus, a-L-AFases treatment followed
by the addition of other glycosidases can be used for the
enhancement of wine flavor by the release of free ter-
penols. Moreover, Yannai and Sato [134] have reported
that a-L-AFase from Pichia capsulata X91 is active at
ethanol concentrations found in wine and able to release
considerable amount of monoterpenols, especially lin-
alool, citronellol and geraniol, thereby increasing the
aromatic flavors of different wines. Furthermore, the
immobilized a-L-AFase, b-D-glucopyranosidase and a-L-
rhamnopyranosidase from A. niger increased the aroma
of a model wine solution to more than 600 mg/l of total
free terpenols [113, 114].

Today, a lot of interest has been generated in the
involvement of a-L-AFases in enhancing the aroma. This
is mainly achieved by using the recombinant yeast strain
(YCA1) [Saccharomyces cerevisiae strain T73

(CECT1894) transformed with YCAbfB from A. niger
N400 (CPS 120.49)] that was capable of efficiently
secreting a-L-AFase directly in vinification process or by
directly adding the purified enzyme obtained from it
[110]. Preliminary experiments carried out with this re-
combinant yeast strain (YCA1) have shown increased
levels of some volatile compounds involved in wine ar-
oma [110]. Furthermore, during wine aging, a number of
the fragrant precursors (such as linalol, nerol and gera-
niol) turn into less-fragrant compounds (a-terpineol,
diols, and triols, oxides, etc.) so that after 6–7 months of
aging for an aromatic wine (Muscato wines), the final
result is often a reduction in the more fragrant-free
terpenes. The addition of glycosidases to the wine
increases its aroma without this disadvantage [12]. For
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instance, a-L-arabinofuranosidase (EC 3.2.1.55) and b-D-
glucopyranosidase (bG, EC 3.2.1.21) are currently pro-
duced on an industrial scale from A. niger [3], and are
used in the aromatization of musts, wines and other
alcoholic beverages [12, 105].

a-L-AFases, acetic acid production and quality
of the bread

Staling is probably the main problem that occurs during
bread storage. This results in a decreased bread shelf life
and causes serious economic losses to the bread industry
[45]. Pentosans are important functional ingredients in
bread and their positive role in bread texture and staling
is well known [16, 58, 64]. Pentosans added to the dough
may be moderately hydrolysed by wheat flour enzymes
and especially by exogenous enzymes such as xylan-
degrading system including a-L-AFases [39, 59]. These
enzymes produce free pentoses (mainly arabinose and
xylose) thereby increasing the availability of soluble
carbohydrates in the dough [44, 45, 59, 79]. This posi-
tively interferes with the metabolism of sourdough lactic
acid bacterium Lactobacillus hilgardii [44]. This bacte-
rium increases the acidification rates and the production
of acetic acid. For example, Gobbetti et al. [45] showed
that by using pentosans, a-L-AFase from A. niger and
Lactobacillus plantarum 20B, soluble carbohydrate
availability, acidification rate and production of acetic
acid increased during sourdough fermentation. (a-L-
AFase mainly hydrolyse the exterior arabinofuranosyl
linkages of pentosans in the dough thereby making
pentoses available for fermentation by L. plantarum [45].
Recently, a-L-AFases along with pentosanse and other
enzymes have been considered as natural improvers that
greatly enhance the overall quality of bread [59, 79].
The enzyme treatment delayed the bread staling and
increased the shelf life of the bread thereby giving eco-
nomic benefits to the bread industry [45, 59, 79].

a-L-AFases in pulp and paper industry

Several commercial xylanase preparations are available
for the treatment of pulp [124]. Application of a-L-AF-
ase would further enhance the delignification of pulp as
the enzyme acts to release the arabinose side chain that
retards the action of other bleaching enzymes [10, 48].
The removal of lignin from semi-bleached kraft pulp was
improved when the pulp was treated with a-L-AFase
from B. stearothermophilus L1 together with xylanase
[10]. The enzyme acted synergistically with a thermo-
philic xylanase in the delignification process, releasing
19.2% of lignin. Delignification obtained using the
combined enzyme treatment exceeded the sum of the
amounts obtained using the enzymes individually [10].
According to Margolles-Clark et al. [77], Trichoderma
reesei a-L-AFase ( could also liberate >60% of the

arabinose from arabinoglucuronoxylan isolated from
pine kraft pulp. The treatment of softwood kraft pulp
with the crude a-L-AFase-rich xylanase and mannanase
from R. marinus increased the bleachability of the pulp
when used in a X–Q–D–Q–P bleaching sequence, where
X was enzyme treatment, Q was chelation, D was
chlorine dioxide treatment with NaClO2 in acidic solu-
tion and P was the peroxide bleaching [46]. The highest
increase in brightness (1.8% ISO) was achieved when the
mixture of a-L-AFase-rich xylanase and mannanase was
used for the pulp treatment. The observed increase in the
brightness (1.9–2.1%) was similar to the value obtained
using commercial enzyme preparation [46]. The high
thermal and pH stability, broad pH optima and lack of
cellulose activity of the a-L-AFase, xylanases [48, 75] and
mannanase produced by R. marinus are most useful for
biobleaching of pulp and paper [24, 46].

a-L-AFases and animal feedstock

The digestion of feedstuffs by ruminal microorganisms
results in the production of acids and microbial cells,
which provide the host animal with its main sources of
energy and protein [35]. Although hemicelluloses
(mainly xylans) represent 30–40% of the total forage
carbohydrate, their contribution to dietary energy
available to the animal is often decreased because of low
overall (40–60%) digestion [21, 34, 130]. The increase in
digestibility of feedstuffs is well correlated with the de-
crease in the degree of substitution of the hemicellulose
polymers with arabinosyl residues [47, 89]. L-arabinose
residues prevent the total hydrolysis of xylans. There-
fore, any mechanism able to remove the arabinosyl side
chains from hemicellulose should increase its digestibil-
ity [21, 22, 33, 34, 53]. The utilization of cell wall poly-
saccharides by poultry and pigs was improved by the
addition of cellulases, pectinases and xylanases [19].
Moreover, the addition of a-L-AFases removes arabi-
nose side groups that restrict the action of glycanases
and could further promote the hydrolysis of solubilized
cell wall polysaccharides [47, 54, 67]. It has been shown
that the use of commercial enzymes preparation con-
taining a-L-AFases enhanced the activity of xylanase
because the latter prefers unsubstituted regions of xylan
as a substrate, thereby reducing the viscosity of the
feedstuffs used [81]. Cotta [22] reported that a-L-AFase
isolated from Ruminococcus albus 8 removed arabinosyl
residues from alfalfa cell wall (ACW), pectic and hemi-
cellulosic polysaccharides, thereby making these sub-
strates more susceptible to attack by other glycanases.
For a given species, such as R. albus, digestion can vary
from a low of 5 to a high of 88% for corn [53]. a-L-
AFases helps endo-xylanases in the hydrolysis of ara-
binoxylan, thereby improving the feed digestibility [14,
96]. The addition of mixture of xylanases and a-L-AF-
ases as a strategy to increase digestion is currently being
used in some countries [96]. This approach has been
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considered in the European Community (AIR contract
number AIR1 CT92) [96]. Genetic manipulation of
anaerobic bacteria and ruminal organisms is yet another
strategy to increase the production of xylan-degrading
enzymes, which can be used to improve the digestion of
plant materials [62, 90, 121]. This has to involve cloning
of a-L-AFase genes into the manipulated ruminal bac-
teria to increase the efficiency of xylan-degrading
enzymes. This approach has been proved good when the
cloned a-L-AFase from Prevotella ruminicola was used
[41].

a-L-AFases in fruits juice industry

a-L-AFases are receiving attention for their applications
in fruit juice clarification [97]. The preparations of pec-
tinolytic enzymes utilized so far contain significant
amounts of a-L-AFases [91, 130, 132]. These enzymes
specifically remove the 1,3-side chains present on the
main 1,5-linked arabinan chains. This results in a pre-
cipitate (haze) consisting of 1,5 arabinans. The a-1,5
arabinanase acts on 1,5 arabinans that help to increase
the solubility of the precipitate [20, 28, 126]. As indus-
trial enzymes often do not require extensive purification,
the juice industry can use a-L-AFases and arabinanase-
containing plant extracts [55, 109]. For example, in apple
and pear juice production, haze formation is a problem
due to the presence of solubilized arabinans [20]. The
precipitates can most probably be avoided by adding
sufficient amounts of a-L-AFase and endo-arabinanase
[85, 126, 131]. Birgisson et al. [11] reported an a-L-AFase
from the thermophilic bacterium PRI-1686 belonging to
the recently described phylum of Thermomicrobia. This
enzyme has the ability to degrade the interior a-1,5
backbone as and a-1,3-side chains of arabinan. More-
over, Miyazaki [87] described a thermophilic a-L-AFase
from the hyperthermophilic bacterium T. maritima
MSB8 that had the ability to degrade arabinan and
debranched arabinan. Such properties are useful to
avoid haze formation in fruits juice industry.

Production of fermentable sugars for bioethanol industry

Enzyme-catalyzed conversion of sugarcane, sugar beet,
corn or wheat to ethanol by distillers yeast S. cerevisiae
is the current process for the industrial production of
bioethanol [111]. These substrates contain non-fer-
mentable hemicelluloses. These hemicelluloses remain
unutilized and accumulate as by-product residues
(~70 % by weight of the total residue) during the process
of ethanol production [1, 5, 111]. The utilization of these
residual hemicelluloses is essential for the efficient con-
version of these compounds to ethanol, value-added
products and industrial chemicals [99, 100, 135]. Nev-
ertheless, these substrates require a suitable pretreatment
before they can be used for the production of ethanol

[100]. For instance, acid hydrolysis can be used for the
hydrolysis of arabinoxylans in hemicelluloses to mono-
saccharides. However, enzymatic hydrolysis is preferred
due to reduced formation of byproducts that may inhibit
the subsequent microbial fermentation [99]. The com-
plexity and heterogeneity of the arabinoxylans in hemi-
celluloses demand enzyme systems that convert these
substrates into fermentable sugars [40, 72, 100, 111].
Such an enzyme system needs to include de-polymeriz-
ing and the side-group cleaving enzymes to degrade
hemicelluloses into pentoses monosaccharides [100].
Moreover, such a system will also need a microorganism
not only capable of utilizing pentoses, but also able to
withstand high concentrations of ethanol produced
during the process [72, 100, 101, 135]. Therefore, tailored
enzymes are required to hydrolyse lignocellulosic sub-
strates to fermentable sugars [100, 111]. The synergistic
action of a-L-AFases with lignocellulose-degrading en-
zymes makes them potential agents for saccharifying
various pretreated agricultural and forestry residues to
monomeric sugars for the production of fuel and
chemicals [99]. Designed hemicellulosic enzymes con-
sisting of Celluclast 1.5 l from T. reesei and Ultraflo L
from Humicola insolens exhibited a strong synergistic
interaction in catalyzing the release of xylose and arab-
inose from wheat arabinoxylans, which otherwise will be
accumulated as by-products during the production of
ethanol. This was mainly due to the cooperative action
of a-L-AFases, endo-1,4-xylanases and xylosidase pres-
ent in the two enzyme preparations. Moreover, this
study suggested that such synergistic interaction might
be useful for the production of efficient enzyme cocktails
to improve the utilization of wheat hemicellulose by-
products produced during the production of ethanol
[111]. Furthermore, Saha and Bothast [101] suggested
that the high activity of the a-L-AFase from Aureoba-
sidium pullulans on both arabinan and debranched
arabinan, its ability to release L-arabinose from arabin-
oxylans, and its high thermostability make this enzyme a
promising candidate for the production of fermentable
sugars from hemicellulosic biomass for ethanol pro-
duction [101].

Synthesis of pentose-containing compounds

Increasingly, enzymes are being adopted for the syn-
thesis of oligosaccharides and glycoconjugates via
enzymatic or mixed chemo-enzymatic routes. The gly-
coside hydrolases (EC 3.2.1) and glycosyltransferases
(EC 3.2.4) are promising enzymes as they play an
important role in the synthesis strategies by performing
glycosylation in one stereoselective step. Glycoside hy-
drolases (mainly exo-acting hydrolases) often display
more relaxed regioselectivity, and unlike glyco-
syltransferases, an extensive palette of glycoside hydro-
lases, displaying a wide range of sugar specificities, are
available [36]. Some a-L-AFases are robust and ther-
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mostable and do not require the use of costly sugar
donors. For example, thermostable a-L-AFase (AbfD3)
from T. xylanilyticus [31] has the ability to catalyze
transglycosylation in the presence of p-nitrophenyl a-L-
arabinofuranoside (pNPAraf) and various alcohols.
Moreover, Rémond et al. [95] reported the synthesis of
several pentose-containing oligosaccharides using this
enzyme. The enzyme AbfD3 possessed the ability to
synthesize oligosaccharides in kinetically controlled
transglycosylation reactions. The products of these
reactions could be useful analytic tools as reference
compounds for the analysis of hemicellulase action, and
for raising antibodies to well-defined motifs for immu-
nochemical-based analysis of plant cell walls [94, 95].
Moreover, a-L-AFases that display transglycosylation
ability constitute potentially interesting tools for
chemoenzymatic synthesis of arabinose-containing
compounds that are difficult to access via organic syn-
thetic methods [95].

Future prospects

Achieving efficient breakdown of the plant cell wall
polysaccharide hemicelluloses and pectins represents an
important and lucrative goal for biotechnologists. For
that, further research has to be carried out to explore
many aspects of a-L-arabinofuranosidases, in much de-
tail. Further, studies on the synergistic effects of the ro-
bust enzyme on the action of other hemicellulases and
pectinases that already exist as commercial enzymes may
lead to improvement of many existing industrial prod-
ucts. Understanding how these enzymes interact and act
on lignocelluloses and the relationship between their
structure and function at molecular level are other as-
pects that need to be studied. Moreover, isolation and
characterization of robust a-L-AFases and genes encoded
for these enzymes will likely have significant implications
in the design of industrial processes that can be accom-
plished within a wide range of conditions and in com-
mercial production of biomass-degrading enzymes.
Manipulation and genetics engineering of bacteria for
obtaining complete and a more efficient lignocellulose-
degrading enzymes system including a-L-AFases genes
will be a novel path into complete saccharification sys-
tem, which is required for many technologies including
ethanol production. Furthermore, chemical treatments
in some industries such as paper and pulp bleaching and
ethanol production which cause environmental problems
could be reduced or replaced by using an efficient hemi-
cellulose-degrading enzymes system.
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